In this post I will record a cute argument showing that no open subscheme of a connected proper scheme is proper. In particular, this shows that no open subscheme of projective space is projective. Intuitively, if we think that proper just means compact then this just says that an open subset of a connected, compact set cannot be compact. We could prove this in topology by taking the inclusion and noting that has to be compact and therefore closed in , which contradicts that is connected.

Let’s do the same thing for schemes over . We have that is proper and therefore separated and is proper by assumption. Therefore by the cancellation property, is proper and so is a clopen subscheme of , which contradicts connectedness.

Advertisements

Since X itself is a proper open subscheme of itself your title should be: Proper Open Subschemes of a Proper Scheme are not Proper 🙂

LikeLike

Ha! “Proper Open Subschemes of a Proper Scheme Turn Out Not to Be”

LikeLike